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Abstract. After a brief review of the kinematics of deep inelastic scattering (DIS) within the so-called Σ
method, we derive the necessary formulae for the treatment of QED radiative corrections to DIS originating
from hard photon radiation. The results are applied to a calculation of the corrections to DIS with a tagged
photon with next-to-leading logarithmic accuracy under HERA conditions. It turns out that the next-to-
leading logarithmic corrections are quite important for the Σ method. We also discuss the dependence
of the corrections on the longitudinal structure function of the proton, FL, in the region of low Q2 and
moderate x.

1 Introduction

The determination of the structure functions of the pro-
ton, F2(x, Q2) and FL(x, Q2), over a broad range of the
kinematic variables belongs to the most important tasks
of the H1 and ZEUS experiments at the HERA ep col-
lider. Especially the extension of these measurements to
the range of small Bjorken x < 10−4 and Q2 of a few GeV2

is of particular interest, as it provides a testing ground for
our attempts to understand the details of the dynamics of
quarks and gluons inside the nucleon.

Whilst the structure function F2 can be extracted quite
easily from the experimental data, it is more difficult to
determine the longitudinal structure function FL. A direct
method that relies only on measured data requires running
the collider at different center-of-mass energies. However,
besides impairing the high-energy program of the machine,
running at reduced beam energies also increases some sys-
tematic errors, (e.g., luminosity uncertainties), in the ex-
perimental analysis.

These problems are circumvented by employing a
method suggested by Krasny et al. [1] that utilizes ra-
diative events. This method takes advantage of a photon
detector (PD) in the very forward direction, as seen from
the incoming lepton (electron or positron) beam. Such a
device is part of the luminosity monitoring system of both
the H1 and ZEUS experiments.

The idea of this method is that emission of photons
in a direction close to the incoming lepton corresponds
to a reduction of the effective beam energy. This effective
beam energy for each radiative event is determined from
the energy of the hard photon observed (tagged) in the
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PD. Early analyses that make use of these radiative events
for a determination of F2 were already published in [2,3].
No QED radiative corrections were taken into account in
these analyses. The feasibility of a determination of FL

was studied in [4].
Recently, the H1 collaboration presented preliminary

results of a refined analysis with newer data [5]. In this
analysis, the authors chose different methods of determi-
nation of the kinematic variables1 (the e-method, where
the kinematic variables are obtained from a measurement
of the scattered lepton, and the Σ method) in different
(x, Q2) bins in order to reduce the experimental system-
atic error. However, since the calculations of the QED
radiative corrections to DIS with a tagged photon [7–9]
did not cover the Σ method, the corrections were only
applied to part of the data in [5]. It is the purpose of the
present work to extend these analytical calculations to the
Σ method.

The Σ method, as proposed by Bassler and Bernardi
[10], tries to combine the momenta of the outgoing lepton
and hadrons judiciously in order to reduce experimental
systematic uncertainties on the determination of the kine-
matic variables especially in the kinematic region of low
Q2 where other methods are limited by e.g., detector res-
olution or energy calibration.

With the help of the quantity2

Σh ≡
∑

h

(Eh + pz,h) , (1)

1 For a discussion of the most common methods to determine
kinematic variables and further references, see e.g. [6]

2 Note that in this paper we take the positive z-axis along
the initial lepton direction, unlike [10] who chose the direction
of the incoming proton beam
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where the sum runs over the detected hadrons, and Eh

and pz,h are the energy and z-component of the respec-
tive particle, the kinematic variables xΣ , yΣ and Q2

Σ are
defined via

yΣ =
Σh

Σh + Ee
′ (1 + cos θ)

, Q2
Σ =

Ee
′ 2 sin2 θ

1 − yΣ
,

xΣ =
Q2

Σ

yΣS
. (2)

Here S = 4EeEp, where Ee and Ep are the beam energies
of the lepton and proton beam, respectively, and Ee

′ and θ
are the energy and scattering angle of the outgoing lepton,
measured with respect to the direction of the initial lepton.

One of the known advantages of the Σ method is its
insensitivity of the determination of yΣ and Q2

Σ to unde-
tected emission of a hard photon collinear to the incoming
lepton (initial state radiation, ISR).

The Σ method has already been used in several anal-
yses of the H1 collaboration. However, the author is not
aware of any publications on an analytical (i.e., non-Monte
Carlo) treatment of QED radiative corrections to deep in-
elastic scattering (DIS) using the Σ kinematic variables3
beyond the collinear (leading log) approximation [12,13].
The presumable reason is that the Σ method has only
been introduced long after the start of data taking at
HERA. Therefore, this paper starts with a brief introduc-
tion to the kinematics of radiative DIS in the Σ method.
Section 3 extends the considerations to the case of DIS
with an exclusive tagged photon, but specialized to the
conditions at HERA, and provides the relevant formulae
to calculate the radiative corrections to the tagged photon
cross section, based on the results of [9]. Some results for
HERA experimental conditions are presented in Sect. 4,
and Sect. 5 contains our conclusions. Finally, the appen-
dices collect several technical details.

2 Kinematics in the Σ method

This section is devoted to a basic review of the Σ method.
Here we shall prepare an appropriate framework for the
treatment of radiative corrections to radiative deep inelas-
tic scattering,

e(p) + P (P ) → e(p′) + X(P ′) + γ(k) , (3)

i.e., DIS with single hard photon emission. The extension
to the process with an additional tagged photon in the

3 As the tagged photon cross section represents a radiative
correction to the DIS cross section [7], one can in principle
calculate the QED corrections to the former for any choice of
kinematic variables with the help of a Monte Carlo event gen-
erator for DIS that properly implements the necessary higher
order QED corrections to DIS. However, no generator exists for
the calculation of QED corrections beyond leading logarithms,
and the leading log generator KRONOS [11] uses approxima-
tions for photon emission in the very forward direction that
make it useless for the present task

forward direction is straightforward and will be performed
in the next section.

Let us begin by stating our conventions for the kine-
matics in the HERA lab frame that are used throughout
this paper. We shall take the orientation of the coordinate
frame such that the positive z-axis points in the direction
of the incoming lepton beam, and the momentum of the
scattered lepton lies in the x-z-plane:

P = (Ep, 0, 0,−pp) ,

p = (Ee, 0, 0, pe) ,

p′ = (Ee
′ , pe

′ sin θ, 0, pe
′ cos θ) ,

k = Eγ(1, sinϑ cos ϕ, sinϑ sinϕ, cos ϑ) . (4)

As the beam energies Ep, Ee, as well as the energy of the
scattered lepton, Ee

′ , are always large compared to the
proton mass, M , and the electron mass, m, we shall take
pp = Ep, pe = Ee, and pe

′ = Ee
′ , wherever possible.

Since we assume Ep � M , we may replace the defini-
tion of the variable Σh in (1) by

Σh :=
P · (P ′ − P )

Ep
. (5)

This allows us to similarly reexpress the definitions (2) of
the kinematic variables xΣ , yΣ , and Q2

Σ through scalar
products of four-momenta via

yΣ =
P · (P ′ − P )

P · (P ′ − P + p′)
, (6)

Q2
Σ(1 − yΣ) =

4(p · p′)(P · p′)
S

, (7)

xΣ =
Q2

Σ

yΣS
, (8)

where
S = 2P · p .

One important thing to note here is the nonlinear depen-
dence of the kinematic variables yΣ and Q2

Σ on the energy
and scattering angle of the outgoing lepton, while it is lin-
ear in the electron-only method (e-method).

As we are dealing with the kinematics of a process with
real photon emission, it is convenient to define an invari-
ant quantity κ, that represents the energy of the outgoing
photon in units of the energy of the incoming lepton, as
measured in the rest frame of the incoming proton,

κ :=
P · k

P · p
. (9)

Energy and momentum conservation of the process (3)
obviously requires 0 ≤ κ < 1. In the special case of emis-
sion of the photon collinear to the incoming lepton, κ also
represents the energy fraction of the initial lepton taken
by the photon in the HERA lab frame.

Using momentum conservation (3) and relations (6)
and (9), it is easy to see that

P · (P ′ − P ) = (1 − κ)yΣ P · p = (1 − κ)yΣ · 1
2
S . (10)
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To proceed, let us express the remaining scalar prod-
ucts of external momenta in terms of invariant kinematic
variables and other measured quantities. We find

P · p′ =
1 − yΣ

yΣ
P · (P ′ − P ) = (1 − κ)(1 − yΣ) · 1

2
S ,

p · p′ =
xΣ y2

Σ S2

4P · (P ′ − P )
=

xΣ yΣ

1 − κ
· 1
2
S . (11)

Furthermore, from the photon’s energy Eγ =: xγEe and
angles ϑ and ϑ′ with respect to the incoming and final
lepton, respectively, we obtain

p · k = xγE2
e (1 − cos ϑ) ,

p′ · k = xγEeEe
′ (1 − cos ϑ′) , (12)

where the angle ϑ′ is calculated from (4),

cos ϑ′ = cos θ cos ϑ + sin θ sinϑ cos ϕ . (13)

Next, we rewrite the left-hand sides of the relations
(11) in the HERA lab frame as

P · p′ = EpEe
′ (1 + cos θ) ,

p · p′ = EeEe
′ (1 − cos θ) , (14)

to derive explicit expressions for the energy and scattering
angle of the outgoing lepton in the HERA frame,

Ee
′ = (1 − κ)(1 − yΣ)Ee +

xΣyΣ

1 − κ
Ep ,

cos θ =
(1 − κ)2(1 − yΣ)Ee − xΣyΣEp

(1 − κ)2(1 − yΣ)Ee + xΣyΣEp
, (15)

that may further be used to eliminate Ee
′ in the second

equation of (12), or to trade the azimuthal angle ϕ in favor
of the angle ϑ′.

It is now straightforward to obtain the expressions for
the momentum transfer to the hadronic system

Q2
h ≡ −(P − P ′)2 = −(p − p′ − k)2

=
xΣyΣS

1 − κ
+ 2k · (p − p′) , (16)

the hadronic scaling variable

xh ≡ Q2
h

2P · (p − p′ − k)
=

Q2
h

(1 − κ)yΣS
, (17)

and the invariant mass of the hadronic system,

W 2 = (P ′)2 = (P + p − p′ − k)2 (18)

= M2 + yΣ

[
1 − κ − xΣ

(1 − κ)

]
S − 2k · (p − p′)

= M2 +
1 − xh

xh
Q2

h .

In the last equation we explicitly retained the proton mass.
The kinematic limit for the phase space of the radiated

photon may be derived by requiring that the invariant

mass of the hadronic system be larger than the threshold
for pion production,

W 2 ≥ M̄2 , where M̄ = M + mπ . (19)

The actual upper limit on the photon energy as a function
of the emission angle, Emax

γ = Emax
γ (θ;ϑ, ϕ) =

Emax
γ (θ;ϑ, ϑ′) is obtained in general by solving a quadratic

or cubic equation; for details see appendices A and B.
Before we conclude this section, we shall give the re-

lations between the kinematic variables in the Σ method
and in the e-only method. From the scalar products (11),
we find:

1 − ye = (1 − κ)(1 − yΣ) =⇒ ye = yΣ + κ(1 − yΣ) ,

xeye =
xΣyΣ

1 − κ
=⇒ xe =

xΣyΣ

(1 − yΣ)[yΣ + κ(1 − yΣ)]
.

(20)

The Jacobian between these two sets is

J ≡ det
(

∂(xe, ye)
∂(xΣ , yΣ)

)
=

yΣ

yΣ + κ(1 − yΣ)

=
yΣ

ye
. (21)

The reader may easily verify that the above formulae
are consistent with the collinear limits discussed in [12].

3 DIS with a tagged photon

After having discussed the kinematics in the Σ method, let
us now turn to our primary aim, the description of radia-
tive corrections to neutral current deep inelastic scattering
with an exclusive tagged photon for the HERA collider.

3.1 Kinematics and lowest order cross section

As already explained in the introduction and described in
more detail in [1] (and references cited therein), the ex-
perimental detection of photons emitted in the very for-
ward direction is actually possible at the HERA collider
due to the presence of photon detectors (PD) that are
part of the luminosity monitoring systems of the H1 and
ZEUS experiments. These PD’s cover an angular range
very close to the direction of the incoming lepton beam,
(ϑγ ≡ ](p,k) ≤ ϑ0 ≈ 5 · 10−4 rad).

Thus, the process under consideration corresponds to
the reaction

e(p) + p(P ) → e(p′) + γ(k) + X(P ′) + [γ(k2)] , (22)

where γ(k) denotes the collinearly emitted, exclusively
measured (tagged) photon, and [γ(k2)] indicates an ad-
ditional (i.e., second) photon in the case of the radiative
correction to the lowest order process.

A set of kinematic variables that is adapted to take into
account tagged collinear radiation is given by the shifted
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Bjorken variables [1,7,9].4 Expressed in terms of the mea-
sured quantities, Σh (see 5), the energy Ee

′ and angle θ of
the scattered lepton, and the energy of the tagged photon,
they read

ŷ =
Σh

Σh + Ee
′ (1 + cos θ)

, Q̂2 =
Ee

′ 2 sin2 θ

1 − ŷ
,

x̂ =
Q̂2

ŷzS
. (23)

Here we denoted by z the energy fraction of the lepton
after initial state radiation of a collinear photon,

z =
2P · (p − k)

S
=

Ee − Eγ

Ee
, (24)

where Eγ represents the energy deposited in the forward
PD.

The above definition (23) corresponds to (6)–(8), but
with an effectively reduced center-of-mass energy, zS. It is
obvious that in the case of the Σ method only x̂ is affected
by collinear initial state radiation, as was already found
in [10].

In analogy to the case of ordinary DIS, we may rewrite
the kinematic variables in a Lorentz invariant fashion:

ŷ =
P · (P ′ − P )

P · (P ′ − P + p′)
, Q̂2 =

4(zp · p′)(P · p′)
(1 − ŷ)zS

,

x̂ =
Q̂2

ŷzS
. (25)

The Born cross section, integrated over the solid angle
of the photon detector (0 ≤ ϑγ ≤ ϑ0, ϑ0 � θ) takes a
factorized form (see also [1,14,7,9]):

1
ŷ

d3σBorn

dx̂dŷ dz
=

α

2π
P (z, L0) Σ̃ , (26)

where

Σ̃ ≡ Σ̃(x̂, ŷ, Q̂2)

=
2πα2(−Q̂2)

Q̂2x̂ŷ2

[
2(1 − ŷ) − 2x̂2ŷ2 M2

Q̂2

+
(

1 + 4x̂2 M2

Q̂2

)
ŷ2

1 + R

]
F2(x̂, Q̂2),

with

P (z, L0) =
1 + z2

1 − z
L0 − 2z

1 − z
, L0 = ln

(
E2

eϑ2
0

m2

)
,

Q̂2 = x̂ŷzS , α(−Q̂2) =
α

1 − Π(−Q̂2)
, (27)

R = R(x̂, Q̂2) =
(

1 + 4x̂2 M2

Q̂2

)
F2(x̂, Q̂2)

2x̂F1(x̂, Q̂2)
− 1 .

4 Here we shall use the notation x̂ etc. of [9] to avoid con-
fusion between shifted Bjorken variables and the usual ones.
Although x̂ etc. are determined in the Σ method, we drop the
index Σ in order to not overload the notation

The quantities F2 and F1 denote the proton structure
functions. Note that we explicitly include the correction
from vacuum polarization Π(−Q̂2) in the virtual photon
propagator, and that we neglect the contributions from Z-
boson exchange and γ-Z interference, because we are inter-
ested mostly in the kinematic region of small momentum
transfer Q̂2.

The cross section (26) describes the process (22) to
lowest order in perturbation theory. The radiative correc-
tions to this cross section are composed of contributions
by corrections due to virtual photon exchange, soft photon
emission, and emission of a second hard photon, with one
of the hard photons being tagged in the PD. Because of
its coarse granularity, we shall assume that the PD cannot
measure photons individually but only their total energy
when two hard photons simultaneously hit the PD in dif-
ferent locations.

3.2 Virtual and soft corrections

The virtual and soft corrections to the lowest order cross
section are simply obtained from the calculation for a mea-
surement using the e-method by substitution. For the sake
of completeness, we quote the result from [9]:

1
ŷ

d3σV+S

dx̂dŷ dz
=

α2

4π2 [P (z, L0)ρ̃ − T ] Σ̃ , (28)

with

ρ̃ = 2(LQ − 1) ln
∆2

Y
+ 3LQ + 3 ln z − ln2 Y

−π2

3
− 9

2
+ 2Li2

(
1 + c

2

)
,

T =
1 + z2

1 − z
(A ln z + B) − 4z

1 − z
LQ ln z

−2 − (1 − z)2

2(1 − z)
L0 + O(const) ,

A = − L2
0 + 2L0LQ − 2L0 ln(1 − z) ,

B =
[
ln2 z − 2Li2(1 − z)

]
L0 ,

LQ = ln
Q̂2

zm2 ,

Li2(t) = −
t∫

0

du

u
ln(1 − u) . (29)

Here ∆ denotes the infrared cutoff for the emission of a
soft photon in addition to the hard one, ∆ = Emax

γ2 /Ee.
Furthermore,

Y ≡ Ee
′

Ee
= z(1 − ŷ) + x̂ŷ

Ep

Ee
and

c ≡ cos θ =
z(1 − ŷ)Ee − x̂ŷEp

z(1 − ŷ)Ee + x̂ŷEp
(30)

follow from the formulae of the previous section with the
replacement p → zp, as the energy loss due to the tagged
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collinear photon is known and already taken into account
in the determination of the kinematic variables.

It should be noted that in (28)–(29) and also further
below we retain only terms with double or single large
logarithms of the small electron mass m, i.e., terms of
order α2L2 and α2L, with L being one of L0 or LQ. As
the lowest order cross section (26) is of order αL relative
to the DIS cross section, we shall denote the terms of order
α2L2 as leading (LL) and those of order α2L as next-to-
leading logarithmic (NLL) ones.

3.3 Double hard bremsstrahlung

Besides the soft and virtual corrections to the lowest order
process, we have to consider also the corrections from hard
bremsstrahlung, which in the present case corresponds to
double hard bremsstrahlung.

In the calculation of the contributions from the emis-
sion of two hard photons, it is convenient to decompose
the phase space into same three regions discussed in [9]: i)
both hard photons hit the forward photon detector, i.e.,
both are emitted within a narrow cone around the lepton
beam (ϑ1,2 ≤ ϑ0, ϑ0 � 1); ii) one photon is tagged in
the PD, while the other is collinear to the outgoing lepton
(ϑ′

2 ≡ ](k2,p ′) ≤ ϑ′
0); and finally iii) the second photon

is emitted at large angles (i.e., outside the defined narrow
cones) with respect to both incoming and outgoing lep-
ton momenta. The last kinematic domain is denoted as
the semi-collinear one. For the sake of simplicity, we shall
always assume below that ϑ′

0 � 1.
The contribution from the kinematic region i) (both

hard photons being tagged, and only the sum of their en-
ergies measured), has the form [9]:

1
ŷ

d3σγγ
i

dx̂dŷ dz
=

α2

8π2 L0

[
L0

(
P

(2)
Θ (z)

+2
1 + z2

1 − z

(
ln z − 3

2
− 2 ln∆

))
+6(1 − z) +

(
4

1 − z
− 1 − z

)
ln2 z

−4
(1 + z)2

1 − z
ln

1 − z

∆

]
Σ̃

+ O(const) , (31)

with

P
(2)
Θ (z) = 2

[
1 + z2

1 − z

(
2 ln(1 − z) − ln z +

3
2

)
+

1
2
(1 + z) ln z − 1 + z

]
.

The contributions to the kinematic regions ii) and iii)
in the present case are slightly more complicated than for
the purely leptonic measurement described in [9]. Before
discussing the contributions to the cross section from ra-
diation almost collinear to the final state lepton, we shall

therefore extend our treatment of the kinematics now and
exhibit the necessary changes to the notation introduced
in Sect. 2.

To this end, let us recall the introduction (9) of the
variable κ. Again we define

κ :=
P · k2

P · p
= x2

1 + cos ϑ

2
. (32)

Here x2 is the energy of the second (i.e., non-collinear)
photon that is not tagged in the PD, in units of the initial
lepton energy, and ϑ is its emission angle with respect
to the incoming lepton. By similar reasoning as in the
previous section, one can easily see that we presently have
0 ≤ κ < z.

On the other hand, the tagging of the collinear hard
photon with energy Eγ in the PD corresponds to a re-
duction of the effective initial lepton energy by a factor
of z (see 24). The corresponding relations between mea-
sured quantities and invariant variables are simply ob-
tained from (10)–(18) via the simultaneous substitutions
Ee → zEe, S → zS, κ → κ/z. Therefore, e.g., (15) now
read

Ee
′ = (z − κ)(1 − ŷ)Ee +

x̂ŷz

z − κ
Ep ,

cos θ =
(z − κ)2(1 − ŷ)Ee − x̂ŷzEp

(z − κ)2(1 − ŷ)Ee + x̂ŷzEp
. (33)

In addition we define

Q̂2
l ≡ 2zp · p′ =

zQ̂2

z − κ
=

x̂ŷz2S

z − κ
,

t̂ ≡ −2zp · k2 = 2x2zE2
e (1 − cos ϑ) ,

ŝ ≡ 2p′ · k2 = 2x2EeEe
′ (1 − cos ϑ′) .

The momentum transfer to the hadronic system and the
true hadronic scaling variable are

Q2
h = −(zp − p′ − k2)2 = Q̂2

l − t̂ − ŝ ,

xh =
Q2

h

2P · (zp − p′ − k2)
=

Q2
h

(z − κ)ŷS
. (34)

The kinematic limit xmax
2 (ϑ, ϑ′) for the emission of the

second hard photon is again obtained by requiring that
the hadronic mass

W 2 = (P + zp − p′ − k2)2 = M2 +
1 − xh

xh
Q2

h (35)

be larger than the inelastic threshold, M̄2. More details
can be found in appendix B.

The contribution to the radiative cross section from the
semi-collinear region iii) is obtained from the correspond-
ing expression in the case of the e-method (see eqs. 3.7f of
[9]),

1
ŷ

d3σγγ
iii

dx̂dŷ dz
=

α2

π2 P (z, L0)

×
∫

d3k2

|k2|
α2(Q2

h)
Q4

h

Iγ(zp, p′, k2) , (36)
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with

Iγ = − 1
ŝt̂

{
GF1(xh, Q2

h)

+

[
xh

[
z2 + (z − κ)2(1 − ŷ)2

]
S2 − xhM2

Q2
h

G

+
[
(z − κ)(1 − ŷ)(Q̂2

l − ŝ) − z(Q̂2
l − t̂)

]
S

]

×F2(xh, Q2
h)

}
,

G = Q4
h − 2ŝt̂ + Q̂4

l , (37)

and ŝ, t̂, Q̂2
l , Q

2
h, and xh as defined above. The angular part

of the k2-integration is clearly restricted to the kinematic
region iii), i.e., the full solid angle with the exception of
the separately treated cones around the incoming and out-
going lepton.

Let us finally turn to the discussion of the kinematic
region ii). As was already discussed in [9], we expect that
the contribution of this region to the observed cross sec-
tion will depend on the experimental event selection, i.e.,
on the method of measurement of the scattered particles.
We shall focus on the very same two possibilities. The
first one is denoted as an exclusive (or bare) event selec-
tion, as only the scattered lepton is measured; the hard
photon that is emitted almost collinearly (i.e., within a
small cone with opening angle 2ϑ′

0 around the momen-
tum of the outgoing lepton) remains undetected or is not
taken into account in the determination of the kinematic
variables. The second, more realistic case (from an exper-
imental point of view) is a calorimetric event selection,
when only the sum of the energies of the outgoing lepton
and photon is actually measured if the photon momentum
lies inside a small cone with opening angle 2ϑ

′
0 along the

direction of the final lepton.
First, in the case of an exclusive event selection, when

only the scattered lepton is detected, we obtain for ϑ′
0 � 1

(similarly to 3.3 of [9])5

1
ŷ

d3σγγ
ii,excl

dx̂dŷ dz
=

α2

4π2 P (z, L0)

×
ζmax∫
ζ0

dζ

ζ2

[
1 + ζ2

1 − ζ

(
L̃ − 1

)
+ (1 − ζ)

]
Σ̃f ,

Σ̃f ≡ Σ̃(xf , yf , Q2
f ) , (38)

where

L̃ = L′
0 + 2 ln

Y (ζ)
Y (1)

, L′
0 ≡ ln

E2
eϑ′

0
2

m2 + 2 lnY (1) ,

Y (ζ) =
ζ2z(1 − ŷ) + [1 − ŷ(1 − ζ)]2 x̂ŷε

ζ [1 − ŷ(1 − ζ)]
5 We have of course kept the small but finite electron mass in

the kinematic region of collinear radiation wherever necessary.
See e.g. [15] for a very readable presentation

xf =
[1 − ŷ(1 − ζ)]2

ζ3 x̂ , yf =
ζŷ

1 − ŷ(1 − ζ)
,

Q2
f =

1 − ŷ(1 − ζ)
ζ2 Q̂2 , ε =

Ep

Ee
,

ζmax = 1 − ∆

Y (1)
= 1 − ∆

z(1 − ŷ) + x̂ŷε
, (39)

and ζ0 is the real solution in the interval (0, 1) of the cubic
equation

ζ3
0 − x̂ [1 − ŷ(1 − ζ0)]

2 − ∆̄m

ŷz
[1 − ŷ(1 − ζ0)] ζ2

0 = 0 , (40)

with ∆̄m =
(
M̄2 − M2

)
/S, see also appendix B. We note

in passing that the form of the leading logarithmic piece of
(38) agrees with the corresponding terms of the calculation
performed in [12].

Last, in the case of a calorimetric event selection, where
only the sum of the energies of the outgoing lepton and
photon is measured if the photon momentum lies inside
the small cone with opening angle 2ϑ

′
0 along the direction

of the final lepton, the corresponding contribution reads

1
ŷ

d3σγγ
ii,cal

dx̂dŷ dz
=

α2

4π2 P (z, L0)

×
ζmax∫
0

dζ

[
1 + ζ2

1 − ζ
(L′

0 − 1 + 2 ln ζ) + (1 − ζ)
]
Σ̃

=
α2

4π2 P (z, L0)
[
(L′

0 − 1)
(

2 ln
Y (1)
∆

− 3
2

)
+3 − 2π2

3

]
Σ̃ . (41)

The total contribution from QED radiative corrections
is finally found by adding up (28), (31), (36), and, depend-
ing on the chosen event selection, (38) or (41). The reader
may easily verify that the unphysical IR regularization
parameter ∆ cancels in the sum, as it should.

It is important to note that the angle ϑ′
0 plays only

the rôle of an intermediate regulator for the bare event
selection and drops out in the final result. In the calori-
metric case there are no large logarithmic contributions
from final state radiation as long as ϑ′

0 does not become
too small, since the mass singularity that is connected
with the emission of the photon off the scattered lepton is
canceled in accordance with the Kinoshita-Lee-Nauenberg
theorem [16]. For more details we refer the reader to [9].

4 Numerical results

In order to illustrate our results, we shall now present
some numerical values obtained for the leading and next-
to-leading radiative corrections. To facilitate the compari-
son of the results for the Σ method with those for determi-
nations of the kinematic variables based on a lepton-only
measurement [7,9], we used as input

Ee = 27.5 GeV , Ep = 820 GeV , ϑ0 = 0.5 mrad .
(42)
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Fig. 1. Radiative corrections δRC (43) with leading and next-
to-leading logarithmic accuracy at x̂ = 0.1 and x̂ = 10−4 and
a tagged photon energy of 5 GeV. No cuts have been applied
to the phase space of the second (semi-collinear) photon

Unless stated otherwise, we chose the ALLM97 parame-
terization [17] as structure function with R = 0, no cuts
were applied to the photon phase space, and we assumed
a calorimetric event selection. For the sake of simplic-
ity we took a fixed representative angular resolution of
ϑ′

0 = 50 mrad for the electromagnetic calorimeter to sep-
arate nearby hits by an electron or positron and a hard
photon, which is close to realistic for the H1 detector at
HERA. Also we disregard any effects due to the magnetic
field bending the scattered charged lepton away from a
collinear photon.

Figure 1 compares the radiative correction

δRC =
d3σ

d3σBorn
− 1 (43)

with leading and next-to-leading logarithmic accuracy at
x̂ = 0.1 and x̂ = 10−4 and for a tagged energy of EPD =
5 GeV. The corresponding results for a tagged energy of
EPD = 20 GeV are shown in Fig. 2. The apparent cutoff
at small ŷ for small x̂ is due to touching of the narrow
cones defined by the solid angle covered by the photon
detector and the cone around the final state lepton.

At first sight the radiative corrections, being only of
the order of a few percent, look rather small as compared
to, e.g., a leptonic measurement. However, this apparent
suppression of the leading logarithmic part of the QED
radiative corrections is easily traced back to the known
weak dependence on initial state radiation of the deter-
mination of the kinematic variables (23)–(25) using the
Σ method [10,6]. On the other hand, the pure next-to-
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Fig. 2. Radiative corrections δRC (43) with leading and next-
to-leading logarithmic accuracy at x̂ = 0.1 and x̂ = 10−4 and
a tagged photon energy of 20 GeV. No cuts have been applied
to the phase space of the semi-collinear photon

leading logarithmic corrections are unsuppressed, as this
“cancellation mechanism” does not work for non-collinear
photon radiation.

When we choose a bare event selection instead of a
calorimetric one, the radiative corrections do become
slightly larger. This is demonstrated in Fig. 3 that com-
pares the radiative corrections for both selection schemes.
The difference between the curves may be easily under-
stood by noticing that in the calorimetric case the contri-
bution from final state corrections to the cross section is
proportional to the relatively small logarithm lnϑ′

0, while
it depends on the larger logarithm lnEe

′ /m in the bare
case.

Next we shall study the influence of a photon energy
cut on the radiative corrections. For simplicity, we assume
an emission angle independent cut Emax

γ2 , which may be re-
alized at large angles by rejecting events that show energy
in the electromagnetic calorimeter sufficiently separated
from the final state lepton, and for small angles by a cut
on the variable

δ := Σh + Ee
′ (1 + cos θ) − 2(Ee − EPD) ,

which is about twice the energy of a photon that is lost
outside the PD. Figures 4 and 5 illustrate the dependence
of the radiative corrections on an energy cut on the semi-
collinear (lost) photon. The influence of a rather loose cut
of Eγ2 < 5 GeV is significant, especially at the larger value
of x̂ = 0.1, although the inclusive corrections were seen to
be quite small.
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Fig. 3. Comparison of the radiative corrections for calorimetric
(“calo”) vs. bare measurement of the scattered lepton at x̂ =
10−4 and at x̂ = 0.1 for a tagged photon energy of 5 GeV
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Fig. 4. Comparison of the cut dependence of the radiative
corrections at x̂ = 0.1 for a tagged photon energy of 5 GeV. A
cut of Eγ2 < 5 GeV has been applied to the phase space of the
semi-collinear photon
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ŷ

δRC

Fig. 5. Comparison of the cut dependence of the radiative
corrections at x̂ = 10−4 for a tagged photon energy of 5 GeV.
A cut of Eγ2 < 5 GeV has been applied to the phase space of
the semi-collinear photon

Finally, Fig. 6 shows the dependence of the next-to-
leading logarithmic corrections on the ratio R (see 27),
again for x̂ = 0.1 and x̂ = 10−4 and for a tagged energy
of EPD = 5 GeV. As one would expect, one sees that only
for large ŷ there is a visible difference between the correc-
tions calculated for (assumed constant) R = 0 and R = 0.3
of the order of a permille. In the case of the purely lead-
ing logarithmic corrections the change would be much less
than the order of the line width, so we omitted the corre-
sponding lines. For this reason, a poorly known R(x, Q2)
as input to the calculation of the QED corrections will not
have any significant effect on the extraction [4] of R from
the measured tagged photon cross section. Increasing the
value of R up to, say, R = 1 for the smaller value of x̂
would simply increase the difference with respect to the
curve for R = 0 but not lead to a qualitative change of
our conclusions.

5 Summary

The Σ method for the determination of the kinematic
variables in deep inelastic scattering has been reviewed
in some detail from a theoretical point of view. We de-
rived the relevant kinematics for the calculation of the
hard photon emission contributions of the QED correc-
tions to deep inelastic scattering for the HERA collider.
As an application, we extended the formalism to radia-
tive DIS events with a hard photon tagged in the forward
photon detectors of the H1 and ZEUS experiments. We
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Fig. 6. Comparison of the R dependence of the NLL correc-
tions at x̂ = 0.1 and x̂ = 10−4 for a tagged photon energy
of 5 GeV. No cut has been applied to the phase space of the
semi-collinear photon

have adapted the calculations [7–9] of the radiative cor-
rections to these DIS events with a tagged photon for the
Σ method determination of kinematic variables. It turned
out that for a calorimetric measurement of the final state
lepton the leading-logarithmic corrections are suppressed
and thus quite small (of the order of 5%), which is an
intrinsic feature of the Σ method. However, the typical
size of the unsuppressed next-to-leading logarithmic con-
tributions is of the same order of magnitude. However, for
a bare event selection there are also significant contribu-
tions to the corrections already at the leading logarithmic
level.

The smallness of the leading QED corrections for the Σ
method suggests that the corrections are well under con-
trol, so that neglected higher order corrections will not
play a significant rôle. It is also encouraging that the de-
pendence of the corrections on the poorly known longitu-
dinal structure function FL (and thus R) is very small.

It is a great pleasure to thank A.B. Arbuzov, M. Fleischer
and H. Spiesberger for a critical reading of the manuscript and
many useful suggestions.

A Kinematic limit of hard photon emission

This appendix is devoted to a discussion of the phase space
limit for the emission of a hard photon in radiative DIS
in the case of the Σ method. As we shall refer exclusively

to the Σ method, and to avoid cumbersome notation, we
drop the index Σ from all kinematic variables.

In the parameterization of the photon phase space fol-
lowing from (4), the invariant mass of the hadronic system
(18) is

W 2 = M2 + yS

(
1 − κ − x

1 − κ

)
− 2xγE2

e (1 − cos ϑ)

+ 2xγEeEe
′ (1 − cos ϑ′)

= M2 + yS [1 − κ − x]

−4E2
e

1 − cos ϑ

1 + cos ϑ
κ [1 − (1 − κ)(1 − y)]

− 4κEe

√
xy(1 − y)S

√
1 − cos ϑ

1 + cos ϑ
cos ϕ , (44)

where we heavily used the relations (12)–(15) and

κ = xγ
1 + cos ϑ

2
. (45)

With the help of the following abbreviations,

µ = 1 − x − M̄2 − M2

yS
≡ 1 − x − ∆̄m

y
,

λ =

√
Ee

Ep

1 − cos ϑ

1 + cos ϑ

ν =
√

4xy(1 − y) cos ϕ , (46)

which satisfy the constraints

0 ≤ µ < 1 , 0 ≤ λ < ∞ , |ν| < 1 , (47)

the inequality W 2 ≥ M̄2 can be brought into a simpler
form:

yµ − [
y(1 + λ2) + λν

]
κ − λ2(1 − y)κ2 ≥ 0 . (48)

Obviously the physical range is 0 ≤ κ ≤ κ0, with

κ0 = −y(1 + λ2) + λν

2λ2(1 − y)

+

√
[y(1 + λ2) + λν]2 + 4y(1 − y)µλ2

2λ2(1 − y)
. (49)

Direct inspection of (48) shows that for y → 1, κ0 ap-
proaches the value

κ̃0 ≡ κ0(y = 1) =
1 − x − ∆̄m

1 + λ2 < 1 . (50)

Note that the choice of ϑ and ϕ for the parameter-
ization of the photon phase space is not well suited for
analytic or semi-analytic calculations, as the treatment of
the separation between the phase space regions ii) and iii)
in Sect. 3 is rather cumbersome.
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B Parameterization
of the hard photon phase space

Instead of using the parameterization (4) for the phase
space of the hard photon, it is often convenient to trade
the azimuthal angle ϕ in favor of the angle ϑ′ between the
photon and the final state lepton. Introducing the vari-
ables τ1, τ2,

τ1 :=
1 − cos ϑ

2
, (51)

τ2 :=
1 − cos ϑ′

2
=

1 − cos θ cos ϑ − sin θ sinϑ cos ϕ

2
,

the integration over the photon solid angle becomes∫
dΩγ ≡

∫
d(cos ϑ) dϕ =

∫
J (τ1, τ2) Θ(D) dτ1 dτ2 , (52)

with the Jacobian

J (τ1, τ2) =
8

| sin θ sinϑ sinϕ| =:
4√D ,

where
D = −4ττ1τ2 − (

τ2 + τ2
1 + τ2

2 − 2ττ1

−2ττ2 − 2τ1τ2) , (53)

τ :=
1 − cos θ

2
=

xyε

(1 − κ)2(1 − y) + xyε
, (54)

ε :=
Ep

Ee
.

A factor of 2 has been taken into account in the Jacobian
for the two-fold ambiguity in the azimuthal angle ϕ. Note
that 0 ≤ κ < 1 implies

τ ≥ τ (0)(x, y) ≡ xyε

1 − y + xyε
. (55)

The range of integration for the variables τ1,2 for a given
photon energy xγEe follows from the argument of the step
function Θ(D). It is trivially obtained if τ depends only on
the kinematic variables x, y but not on the photon phase
space variables, as is the case for a purely leptonic mea-
surement of the kinematic variables [9], but it is more
involved for the Σ method and will therefore be discussed
below.

As the relevant variables for the parameterization of
the phase space of the photon we choose τ1, τ2, and xγ .
Due to (54), τ is related to xγ , as κ = xγ(1−τ1). Therefore,
it appears to be reasonable to take τ1 as the outermost
integration and to determine the range of integration for
the other two variables for each value of τ1, 0 < τ1 < 1.

Obviously, the range where the argument D (53) of the
Θ function above is positive is given by the interior of an
ellipse as shown in Fig. 7. The ellipse touches the τ - and
τ2-axes at the value of τ1, and the lines τ = 1 and τ2 = 1
at the value of (1 − τ1).

The explicit form of the upper and lower boundaries
of the ellipse are

τ±
2 (τ1, τ) = τ1(1 − τ) + τ(1 − τ1)

±2
√

τ1(1 − τ)τ(1 − τ1) . (56)

τ

τ1 1τ (0)(x, y)

τ1

1

τ2

Fig. 7. Schematic view of the kinematic range for the integra-
tion over the angles τ and τ2 for fixed τ1. The allowed range
from the change of variables (51) alone is given by the interior
of the ellipse. In addition, for given x, y, the region left to the
dotted line is unphysical, as τ ≥ τ (0)(x, y) from (55)

On the other hand, remembering that for given x, y
there is a lower limit (55) on τ , we see that the part of
this ellipse left to the dotted line is certainly unphysical.

Yet we have not made use of a lower limit on the
hadronic mass that is due to the inelastic threshold or to
a lower cut on the invariant hadronic mass. To this end,
we express the hadronic mass (44) in terms of the τ1,2:

W 2 = M2 + yS

(
1 − κ − x

1 − κ

)
−4xγE2

eτ1 + 4xγEeEe
′ τ2

= M2 + yS

[
1 − κ − x

1 − κ

]
− S

ε

τ1

1 − τ1
κ (57)

+ S
τ2

1 − τ1

[
(1 − κ)(1 − y)

ε
+

xy

1 − κ

]
κ .

Requiring W 2 ≥ M̄2 leads to the inequality

W 2 − M̄2 =
S

(1 − κ)(1 − τ1)
[
Aκ3 + Bκ2 + Cκ + D

] ≥ 0

where

A =
(1 − y)τ2

ε

B = (1 − τ1)y +
τ1 − 2(1 − y)τ2

ε
(58)

C = xyτ2 − 2y(1 − τ1) + (1 − τ1)∆̄m

+
(1 − y)τ2 − τ1

ε
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D = (1 − τ1)
[
(1 − x)y − ∆̄m

]
.

Since A ≥ 0, D > 0, the cubic equation Aκ3 + Bκ2 +
Cκ + D = 0 will have either one or three real solutions:
always a negative one which is obviously unphysical, and
two positive or complex conjugate ones.

In case there are three real solutions, only the smaller
one of the two positive solutions may be physical. This
may be seen by studying the limit τ1 → 1, where κ has to
go to 0 for any finite photon energy xγ .

For small values of τ2, i.e., radiation collinear to the
outgoing lepton, one always has three real solutions. This
is easily verified by direct inspection of (58) for A → 0:
the negative solution goes to −∞ essentially as −B/A,
and the resulting quadratic equation in the limit τ2 = 0
always has a positive discriminant.

In the remaining cases when there is only one real (and
negative) solution, the effective upper limit on κ may be
indirectly obtained from (54) and the maximum allowed
value for τ+ as a function of τ1,2, similarly to (56),

κ ≤ κ̄(τ1, τ2) ≡ 1 −
√

1 − τ+

τ+

τ (0)

1 − τ (0) , (59)

which is entirely of geometric origin.
Let us now compare the above limits that were de-

rived from the lower limit (or a cut) on the hadronic mass
with the kinematic limits for collinear photon radiation,
as given in [12]. The case of collinear initial state radia-
tion (ISR) is recovered by setting τ1 → 0, so that κ → xγ ,
τ2Ee

′ → xyEp/(1 − xγ), and from (57) one immediately
obtains

xγ ≤ 1 − x − ∆̄m

y
. (60)

This is consistent with the limit on z (= 1 − xγ) given
in [12] up to terms of order O (

∆̄m

)
, as these authors did

not consider neither the inelastic threshold nor a cut on
the hadronic mass.

Collinear final state radiation (FSR) corresponds to
taking the limit τ2 → 0, τ1 → τ = xyε/{[1 − xγ(1 − τ)]2
×(1−y)+xyε}, with τ being implicitly defined. However,
in order to be able to compare our limit with the one given
in [12], we shall think of the collinear photon as taking
away the fraction (1 − ζ) of the outgoing lepton-photon
system, while the lepton retains the fraction ζ. Hence, we
have k = [(1 − ζ)/ζ]p′, and we may write

P · k =
1 − ζ

ζ
P · p′ =⇒ κ

1 − κ

ζ

1 − ζ
= 1 − y ,

1 − κ =
ζ

1 − y(1 − ζ)
, (61)

and thus

p · k =
1 − ζ

ζ
p · p′ =

xy

1 − κ

1 − ζ

ζ
· 1
2
S

=
xy[1 − y(1 − ζ)](1 − ζ)

ζ2 · 1
2
S . (62)

Inserting these relations into (18) we obtain

W 2
∣∣∣
FSR

= M2+
ζ3 − x[1 − y(1 − ζ)]2

ζ2[1 − y(1 − ζ)]
yS ≥ M̄2 . (63)

This inequality leads to a lower limit ζ0, 0 < ζ0 < 1, that is
the single real solution of a cubic equation, W 2(ζ0) = M̄2.
The kinematic limit that follows from (63) is consistent
with the limit for FSR given in [12], again up to terms of
order O (

∆̄m

)
that have been neglected in their work.

Finally, we should mention that the above considera-
tions directly apply only to the case of conventional deep
inelastic scattering with a single radiated photon. How-
ever, the case of DIS with a tagged collinear photon and a
hard non-collinear second photon is easily recovered, pro-
vided we perform the simultaneous substitutions

Ee → zEe , S → zS , xγ → x2

z
, κ → κ

z
,

ε → ε

z
, and ∆̄m → ∆̄m

z
(64)

in the expressions given above.
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